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Abstract—1,3-Dipolar cycloaddition between aromatic selenoaldehydes, generated by thermal retro Diels—Alder reaction of anthra-
cene cycloadducts, and nitrile oxides or nitrile imines proceeded efficiently to give the corresponding [3+2] cycloadducts as a single
isomer in good yields, being 1,4,2-oxaselenazoles or 1,3.4-selenadiazoles, respectively.

© 2007 Elsevier Ltd. All rights reserved.

Selenocarbonyl compounds are very reactive selenium
analogues of carbonyl compounds and play an increas-
ingly important role in organic synthesis.! Among them
selenoaldehydes and selenoketones have been well rec-
ognized to serve as significant 2n dienophiles in cycload-
dition reactions.”? In this context, cycloaddition of the
reactive selenoaldehydes is an important approach to
the preparations of selenium-containing heterocycles
which have been recently paid much attention because
of their interesting reactivities® and their potential bio-
logical applications.* In the course of our studies for
generation and reaction of reactive selenoaldehydes,’
we have developed an efficient method for the genera-
tion of selenoaldehydes under neutral conditions via
thermal retro Diels—Alder reaction of selenoaldehyde-
anthracene cycloadducts 1 that were easily synthesized
in good yields from the reaction of the corresponding
aldehydes with (Me,Al),Se in the presence of anthracene
(Scheme 1).° We have already reported the reactions of
selenoaldehydes with oxygen-functionalized conjugated
dienes,” 2-methoxyfuran,® and 5-ethoxyoxazoles’ using
the above retro Diels—Alder protocol.
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Scheme 1. Generation of selenoaldehydes.

On the other hand, 1,3-dipolar cycloaddition has been
considered to be the most useful method for the con-
struction of five-membered heterocyclic ring systems
containing one or more heteroatoms.!? Selenoaldehydes
serve as excellent dienophiles as mentioned above and
would also have a high potential as good dipolarophiles.
Indeed 1,3-dipolar cycloaddition between selenoaldehy-
des and a stable nitrile oxide (2,4,6-trimethylbenzonitrile
N-oxide) has been already reported.'! However, to our
knowledge, up to date there are no reports regarding
1,3-dipolar cycloaddition of other 1,3-dipoles with sele-
noaldehydes. We have carried out the reaction of seleno-
benzaldehyde, generated by our thermal retro Diels—
Alder reaction of 1 (R = Ph), with some popular 1,3-di-
poles such as nitrones, nitrile oxides, azomethine ylides,
and nitronates, but only reaction with nitrile oxides gave
the corresponding [3+2] cycloadducts of the selenoalde-
hyde in good yields as isolable compounds. This result
may indicate that efficient [3+2] cycloaddition reaction
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of selenoaldehydes can be achieved by using a linear-
type 1,3-dipole such as nitrile oxide. In this paper we de-
scribe an efficient 1,3-dipolar cycloaddition between aro-
matic selenoaldehydes and nitrile oxides or nitrile imines
as a linear-type 1,3-dipole to afford selenium-containing
five-membered ring products, 1,4,2-oxaselenazoles or
1,3,4-selenadiazoles, respectively.

Most nitrile oxides are short-lived and reactive species,
and easily dimerize, rearrange, or polymerize.'? At first,
we used a stable aromatic nitrile oxide, 2,4,6-tri-
methylbenzonitrile N-oxide,!® easily prepared through
two steps from 2,4,6-trimethylbenzaldehyde. The toluene
solution of 1 (R = Ph) and the stable nitrile oxide was
heated at reflux for 30 min to give the desired [3+2] cyc-
loadduct (2a) as a single isomer in 85% yield (Eq. 1). The
structure of this adduct was supported by the analysis of
the NMR and mass spectra.'# In particular, regiochem-
istry of the cycloadduct was confirmed by the mass spec-
trum which showed a fragment peak at m/z 225 with an
isotope pattern involving one selenium atom, corre-
sponding to [M—PhCHO]" as shown in Scheme 2. This
indicates that a carbon-oxygen bond exists in the
obtained cycloadduct, being 1,4,2-oxaselenazole.
Toluene

O O ¥
Ph)J\H
reflux, 30 min
(R=Ph)
{%c N--O g

Yield = 85%
2a (R=Ph)

()

Several anthracene cycloadducts with an aromatic sub-
stituent were similarly treated with 2.4,6-tri-
methylbenzonitrile N-oxide in toluene at reflux for
30 min to give the corresponding [3+2] cycloadducts
(2)'* as a single isomer in good yields. The results are
shown in Table 1. Mass spectra of all cycloadducts
showed a same fragment peak pattern at m/z 225 that
is corresponding to [M—ArCHO]", which indicates that
all obtained cycloadducts have 1,4, 2 oxaselenazole skel-
eton. Anthracene cycloadducts having an aliphatic
group did not undergo retro Diels—Alder reaction at tol-
uene reflux temperature, but at over 150 °C, the genera-
tion of aliphatic selenoaldehydes was efficient. Thus, we
examined the reaction of 1 (R = n-Pr and CH,CH,Ph)
with the nitrile oxide at 160 °C in toluene, but no isola-
ble cycloadducts could be obtained from the reaction
mixture.

L -
Se- e
; Ph PH
m/z225 not obtained

Scheme 2.

Table 1. 1,3-Dipolar cycloaddition between aromatic selenoaldehydes
and 2,4,6-trimethylbenzonitrile N-oxide

‘C%CEN*O N
‘o

Toluene
reflux, 30 min

Entry Ar Cycloadduct Yield (%)*
1 Ph 2a 85
2 p-CIC¢H, 2b 74
3 1-Naphthyl 2c 96
4 [}-CF3C6H4 2d 85
5 p-CH3C5H4 2e 65

#Isolated yield.

Next we planned the reaction of selenoaldehydes with
unstable nitrile oxides which are in situ formed via dehy-
drochlorination of hydroximoyl chlorides with triethyl-
amine as a base.!?> Generally, this dehydrochlorination
has to be carried out in the presence of the dipolaro-
phile, since the lifetime of the reactive nitrile oxide is
too short for isolation. However selenoaldehydes, being
a dipolarophile in this research, are also much more
reactive and very unstable. Accordingly, both seleno-
aldehyde and nitrile oxide must be efficiently in situ
generated in the reaction mixture simultaneously. After
several trials under some different conditions, we found
a following reaction procedure for an efficient 1,3-dipo-
lar cycloaddition. After 6 equiv of tricthylamine was
added to a toluene solution involving 1 (R = Ar) and
3 equiv of aromatic hydroximoyl chloride at room tem-
perature, the reaction vessel was immediately placed for
30 min in an oil bath preheated at 110 °C. The results
are summarized in Table 2. In all cases, an efficient
1,3-dipolar cycloaddition proceeded to give the desired
[3+2] cycloadducts (3), 1,4,2-oxaselenazoles, as a single
regioisomer in good yields.!> They were very stable at
room temperature in the atmosphere. The regiochem-
istry of the obtained [3+2] cycloadducts was the same
as the case using 2,4,6-trimethylbenzonitrile N-oxide,

Table 2. 1,3-Dipolar cycloaddition between aromatic selenoaldehydes
and unstable nitrile oxides

x—@—gzN—OH

D0 _ew

N<
< > (O
X 2
/kAr

Se Toluene Se
Ar reflux, 30 min 3

x@c N-OH + EtgN — X~ )-C=N-0
unstable

Entry Ar X Cycloadduct Yield (%)*

1 Ph MeO 3a 67
2 1-Naphthyl MeO 3b 67
3 p-CF;C6Hy MeO 3c 94
4 p-CF3C6H4 H 3d 65
5 Ph Cl 3e 76
6 p-CF;CeH,  Cl 3f 58

#Isolated yield.
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that is, the mass spectra of the cycloadducts showed a
fragment peak corresponding to [M—ArCHO]".

The reaction of selenoaldehydes with unstable aliphatic
nitrile oxides did not give a satisfactory result, but the
use of a stable aliphatic nitrile oxide, 2,2,3-triphenylpro-
panenitrile N-oxide,'® resulted in the excellent result as
shown in Eq. 2. In this case, the [3+2] cycloadduct
was obtained in excellent yield as a single isomer with
the same regiochemical result as mentioned above.

Se
0 [

Toluene
Ph reflux, 30 min

PhCH, (2)
Ph~|7CEN—>O PhCH, N
Ph Ph % \i
Yield = 91% Ph Se™pp

Nitrile imines are also recognized as a linear-type 1,3-di-
pole and in situ generated via dehydrochlorination of
hydrazonoyl chlorides with triethylamine.'?* We have
examined 1,3-dipolar cycloaddition between aromatic
selenoaldehydes and aromatic N-phenyl nitrile imines,
using a similar reaction procedure as the aforemen-
tioned 1,3-dipolar cycloaddition of nitrile oxides. The
expected [3+2] cycloadducts (4), 1,3,4-selenadiazoles,
were obtained as a single regioisomer in good yields
and identified by the analysis of the NMR and mass
spectra.!” The results are shown in Table 3. No signifi-
cant fragment peak corresponding to [M—ArCHNPh]"
was observed in the mass spectra, but the signal corre-
sponding to the eliminated fragment ion, [ArCHNPh]",
appeared clearly with over 50% relative intensity in all
cases. These selenium-containing five-membered hetero-
cycles were also stable at room temperature in the
atmosphere.

In conclusion, we have demonstrated that regioselective
1,3-dipolar cycloaddition between aromatic selenoalde-

Table 3. 1,3-Dipolar cycloaddition between aromatic selenoaldehydes
and N-phenyl nitrile imines

X—@—C:N—NHPh

|
SOSRE

N-,,-Ph
x{ >—</ N
/kAr

Se Toluene Se
Ar reflux, 30 min 4
X—@—(i):N—NHPh + Et3N X—@—CEN-’NPh
Cl unstable
Entry Ar X Cycloadduct Yield (%)*
1 Ph H 4a 81
2 p-MCOC5H4 H 4b 67
3 p-CF;CH, H 4c 85
4 Ph NO, 4d 68
5 p-CF3C6H4 NOZ 4e 87

#Isolated yield.

hydes, generated from 1 via thermal retro Diels—Alder
reaction, and nitrile oxides or nitrile imines proceeded
efficiently to afford the [3+2] cycloadducts, 1,4,2-oxasel-
enazoles or 1,3,4-selenadiazoles, respectively, in good
yields. This method offered a promising prospect for
building up selenium-containing five-membered hetero-
cyclic ring system. We are currently extending the scope
of 1,3-dipolar cycloaddition between selenoaldehydes
and other 1,3-dipoles. The results of our findings will
be reported in due course.
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